BARON SYSTEM DESIGN BASIS

DATA SHEET 090280

Case studies of BARON Systems are done while taking the following into consideration for BARON System Design.

- Measurement Techniques
- Mitigation Techniques
- Performance And Payback Projection
- Validation of the Study

DESIGN METHODOLOGY

For the reliable Performance of BARON Systems, the Design of the System is by a Step-by-Step Systematic Design Methodology as mentioned below:

Studies	System Selection Criteria
Power Quality Studies	Type and Location of System
Load Flow Studies	Rating of System
Harmonic Studies	Projected Performance levels
	Annual Saving
	Cost of System
	Payback Calculation
Analysis of Data	System Supplies & Validation
Harmonic Analysis	Supply of such Systems
Waveform Analysis	Validation report of Systems
Spectrum	Validation of savings

PERFORMANCE

The installation of BARON Systems will lead to various direct and indirect benefits, which are estimated for possible cases and are validated for the performance of the offered Systems. The optimally designed and selected System will perform the following:

- Shunt Harmonic Currents.
- •Reduce Neutral Current & safeguards it.
- •Reduce Total Harmonic Distortion.
- •Reduce System Losses.
- •Reduce Peak & average Phase Current.
- Reduce Transformer overload.
- •Reduce local Neutral to Ground Voltage.

- •Improve System protection.
- •Increase System's Active loading capacity.
- •Improve Power Factor of Non-linear loads.

BENEFITS

DIRECT BENEFITS – EVALUATION OF SIMPLE PAYBACK	INDIRECT BENEFITS
•Reduction of MD KVA	•Increased life of Equipments and Machinery
•Avoidance of MD penalty	•Reduced Equipment/Machine Down time
•Avoidance of PF penalty	•Reliable Measurement and Control functions
•Availing PF incentives	•Reduced Maintenance cost
•Reduction in KWHr consumption	•Avoidance of harmful Resonance

REACTIVE POWER MANAGEMENT SYSTEMS - INDUSTRIES - LOAD PROFILE

TEXTILE INDUSTRIES
BREWERIES
CONFECTIONERIES
CHEMICAL INDUSTRIES
RICE MILLS
FOUNDARIES

MALLS
IT PARKS
CEMENT INDUSTRIES
PAPER MILLS
PRINTING PRESS
OTHER MANUFACTURING SECTORS

QUARRIES
WELDING SHOPS
SHEAR PRESS LOADS
PLASTIC MOULDING
READY MIX CEMENT
STACKERS/RECLAIMERS

ROLLING MILLS